Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We analyze the properties of relativistic (>700 keV) electron precipitation (REP) events measured by the low-Earth-orbit (LEO) POES/MetOp constellation of spacecraft from 2012 through 2023. Leveraging the different profiles of REP observed at LEO, we associate each event with its possible driver: waves or field line curvature scattering (FLCS). While waves typically precipitate electrons in a localized radial region within the outer radiation belt, FLCS drives energy-dependent precipitation at the edge of the belt. Wave-driven REP is detected at any MLT sector and L shell, with FLCS-driven REP occurring only over the nightside–a region where field line stretching is frequent. Wave-driven REP is broader in radial extent on the dayside and accompanied by proton precipitation over 03–23 MLT, either isolated or without a clear energy-dependent pattern, possibly implying that electromagnetic ion cyclotron (EMIC) waves are the primary driver. Across midnight, both wave-driven and FLCS-driven REP occur poleward of the proton isotropic boundary. On average, waves precipitate a higher flux of >700 keV electrons than FLCS. Both contribute to energy deposition into the atmosphere, estimated of a few MW. REP is more associated with substorm activity than storms, with FLCS-driven REP and wave-driven REP at low L shells occurring most often during strong activity (SML* < −600 nT). A preliminary analysis of the Solar Wind (SW) properties before the observed REP indicates a more sustained (∼5 h) dayside reconnection for FLCS-driven REP than for wave-driven REP (∼3 h). The magnetosphere appears more compressed during wave-driven REP, while FLCS-driven REP is associated with a faster SW of lower density. These findings are useful not only to quantify the contribution of >700 keV precipitation to the atmosphere but also to shed light on the typical properties of wave-driven vs FLCS-driven precipitation which can be assimilated into physics-based and/or predictive radiation belt models. In addition, the dataset of ∼9,400 REP events is made available to the community to enable future work.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Magnetospheric precipitation plays an important role for the coupling of Magnetosphere, Ionosphere, and Thermosphere (M-I-T) systems. Particles from different origins could be energized through various physical mechanisms and in turn disturb the Ionosphere, the ionized region of the Earth’s atmosphere that is important for telecommunication and spacecraft operations. Known to cause aurora, bright displays of light across the night sky, magnetospheric particle precipitation, modifies ionospheric conductance further affecting the plasma convection, field-aligned (FAC) and ionospheric currents, and ionospheric/thermospheric temperature and densities. Therefore, understanding the properties of different sources of magnetospheric precipitation and their relative roles on electrodynamic coupling of M-I across a broad range of spatiotemporal scales is crucial. In this paper, we detail some of the important open questions regarding the origins of magnetospheric particle precipitation and how precipitation affects ionospheric conductance. In a companion paper titled “The Significance of Magnetospheric Precipitation for the Coupling of Magnetosphere-Ionosphere-Thermosphere Systems: Effects on Ionospheric Conductance”, we describe how particle precipitation affects the vertical structure of the ionospheric conductivity and provide recommendations to improve its modelling.more » « less
-
Abstract We present observations that show structured diffuse aurora (SDA) correlated with electron precipitation directly from the outer boundary of the outer radiation belt. The SDA maps to the nightside transition region (∼9–12RE) in the magnetic‐equatorial plane during a substorm growth phase. The energy flux of 100‐ to 300‐keV electrons lost from the outer boundary of the radiation belt is ∼0.4 mW/m2, which is comparable to electron dropouts >100 keV during magnetic storms. The latitudinal dispersion of energetic electrons observed in the ionosphere with energetic electrons more equatorward suggests nonadiabatic scattering from a thinning current sheet. The GLobal airglOW (GLOW) model shows significant optical contributions (up to 46%) from electrons >30 keV within the SDA. Ground‐ and space‐based measurements are consistent with the conclusion that the SDA marks the outer radiation belt boundary during substorm growth phase.more » « less
An official website of the United States government
